95,566 research outputs found

    Compact, electromagnetic multiple-stream multiple-stream pump for liquid metals - Design concept

    Get PDF
    Pump provides independent liquid-metal streams at a uniform flow rate. The toroidal magnet structure can accomodate any reasonable number of pump circuits. The power requirement is suited to the output voltage of the basic thermionic diode output

    Superfluid Phase Stability of 3^3He in Axially Anisotropic Aerogel

    Full text link
    Measurements of superfluid 3^3He in 98% aerogel demonstrate the existence of a metastable \emph{A}-like phase and a stable \emph{B}-like phase. It has been suggested that the relative stability of these two phases is controlled by anisotropic quasiparticle scattering in the aerogel. Anisotropic scattering produced by axial compression of the aerogel has been predicted to stabilize the axial state of superfluid 3^3He. To explore this possiblity, we used transverse acoustic impedance to map out the phase diagram of superfluid 3^3He in a 98\sim 98% porous silica aerogel subjected to 17% axial compression. We have previously shown that axial anisotropy in aerogel leads to optical birefringence and that optical cross-polarization studies can be used to characterize such anisotropy. Consequently, we have performed optical cross-polarization experiments to verify the presence and uniformity of the axial anisotropy in our aerogel sample. We find that uniform axial anisotropy introduced by 17% compression does not stabilize the \emph{A}-like phase. We also find an increase in the supercooling of the \emph{A}-like phase at lower pressure, indicating a modification to \emph{B}-like phase nucleation in \emph{globally} anisotropic aerogels.Comment: 4 pages, 4 figures, submitted to LT25 (25th International Conference on Low Temperature Physics

    The Projected Gross-Pitaevskii Equation for harmonically confined Bose gases

    Get PDF
    We extend the Projected Gross Pitaevskii equation formalism of Davis et al. [Phys. Rev. Lett. \bf{87}, 160402 (2001)] to the experimentally relevant case of harmonic potentials. We outline a robust and accurate numerical scheme that can efficiently simulate this system. We apply this method to investigate the equilibrium properties of a harmonically trapped three-dimensional Bose gas at finite temperature, and consider the dependence of condensate fraction, position and momentum distributions, and density fluctuations on temperature. We apply the scheme to simulate an evaporative cooling process in which the preferential removal of high energy particles leads to the growth of a Bose-Einstein condensate. We show that a condensate fraction can be inferred during the dynamics even in this non-equilibrium situation.Comment: 11 pages, 7 figure

    Critical temperature of a trapped Bose gas: comparison of theory and experiment

    Get PDF
    We apply the Projected Gross-Pitaevskii equation (PGPE) formalism to the experimental problem of the shift in critical temperature TcT_c of a harmonically confined Bose gas as reported in Gerbier \emph{et al.} [Phys. Rev. Lett. \textbf{92}, 030405 (2004)]. The PGPE method includes critical fluctuations and we find the results differ from various mean-field theories, and are in best agreement with experimental data. To unequivocally observe beyond mean-field effects, however, the experimental precision must either improve by an order of magnitude, or consider more strongly interacting systems. This is the first application of a classical field method to make quantitative comparison with experiment.Comment: revtex4, four pages, three figures. v2: updated to published version. Several additions to figures, and better explanations in text in response to referee comment

    Editorial, Seminars in Cell & Developmental Biology

    Get PDF
    It is a pleasure to introduce this special edition of Cell and Development Biology dedicated to the field and application of Biosensors. This edition comprises seven reviews covering the most active research areas where we believe some of the most prominent advances in the field are likely to emerge in the near to medium term. In line with scope of this journal, some emphasis is given towards techniques applicable to Cell Biology

    Acoustic Spectroscopy of Superfluid 3He in Aerogel

    Get PDF
    We have designed an experiment to study the role of global anisotropic quasiparticle scattering on the dirty aerogel superfluid 3He system. We observe significant regions of two stable phases at temperatures below the superfluid transition at a pressure of 25 bar for a 98% aerogel.Comment: 2 pages, 2 figures, accepted for publication in proceedings of Low Temperature Conference 2
    corecore